Modulation of potassium channel gating by external divalent cations
نویسندگان
چکیده
We have examined the actions of Zn2+ ions on Shaker K channels. We found that low (100 microM) concentrations of Zn2+ produced a substantial (approximately three-fold) slowing of the kinetics of macroscopic activation and inactivation. Channel deactivation was much less affected. These results were obtained in the presence of 5 mM Mg2+ and 4 mM Ca2+ in the external solution and so are unlikely to be due to modification of membrane surface charges. Furthermore, the action of 100 microM Zn2+ on activation was equivalent to a 70-mV reduction of a negative surface potential whereas the effects on deactivation would require a 15-mV increase in surface potential. External H+ ions reduced the Zn-induced slowing of macroscopic activation with an apparent pK of 7.3. Treatment of Shaker K channels with the amino group reagent, trinitrobenzene sulfonic acid (TNBS), substantially reduced the effects of Zn2+. All these results are qualitatively similar to the actions of Zn2+ on squid K channels, indicating that the binding site may be a common motif in potassium channels. Studies of single Shaker channel properties showed that Zn2+ ions had little or no effect on the open channel current level or on the open channel lifetime. Rather, Zn2+ substantially delayed the time to first channel opening. Thus, K channels appear to contain a site to which divalent cations bind and in so doing act to slow one or more of the rate constants controlling transitions among closed conformational states of the channel.
منابع مشابه
Chemical properties of the divalent cation binding site on potassium channels
The actions of divalent cations on voltage-gated ion channels suggest that these cations bind to specific sites and directly influence gating kinetics. We have examined some chemical properties of the external divalent cation binding sites on neuronal potassium channels. Patch clamp techniques were used to measure the electrophysiological properties of these channels and Zn ions were used to pr...
متن کاملDivalent cations and the activation kinetics of potassium channels in squid giant axons
The effects of external Zn+2 and other divalent cations on K channels in squid giant axons were studied. At low concentration (2 mM) Zn+2 slows opening kinetics without affecting closing kinetics. Higher concentrations (5-40 mM) progressively slow opening and speed channel closing to a lesser degree. In terms of "shifts," opening kinetics are strongly shifted to the right on the voltage axis, a...
متن کاملPermeation and Gating of an Inwardly Rectifying Potassium Channel
Permeation, gating, and their interrelationship in an inwardly rectifying potassium (K+) channel, ROMK2, were studied using heterologous expression in Xenopus oocytes. Patch-clamp recordings of single channels were obtained in the cell-attached mode. The gating kinetics of ROMK2 were well described by a model having one open and two closed states. One closed state was short lived (approximately...
متن کاملDivalent cation modulation of a-type potassium channels in acutely dissociated central neurons from wide-type and mutant Drosophila.
Drosophila mutants provide an ideal model to study channel-type specificity of ion channel regulation in situ. In this study, the effects of divalent cations on voltage-gated K+ currents were investigated in acutely dissociated central neurons of Drosophila third instar larvae using the whole-cell patch-clamp recording. Our data showed that micromolar Cd2+ enhanced the peak inactivating current...
متن کاملHeme Regulates Allosteric Activation of the Slo1 BK Channel
Large conductance calcium-dependent (Slo1 BK) channels are allosterically activated by membrane depolarization and divalent cations, and possess a rich modulatory repertoire. Recently, intracellular heme has been identified as a potent regulator of Slo1 BK channels (Tang, X.D., R. Xu, M.F. Reynolds, M.L. Garcia, S.H. Heinemann, and T. Hoshi. 2003. Nature. 425:531-535). Here we investigated the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of General Physiology
دوره 104 شماره
صفحات -
تاریخ انتشار 1994